Net - A Mutual

[ Mativation |

> Popularity and importance regarding conversational
Als rises in all lines of business, yet how to generate
the most appropriate response stays challenging.

> Traditional generative models frame dialog
generation as machine translation problem [1],
neglecting that similar sentences could not ensure
identical understanding in different perspectives.

> Net is proposed and implemented with the aim
of maximizing the mutual understandings of the
conversation participants.

| Specifications

> ConvAlI2 Dataset: consists of 164,356 utterances in
over 10,981 dialogs

> The encode and decoder of the model is implemented
using PyTorch and ParlAl Framework with 2-layer GRUs
and a hidden size of 128

| Discussion |

> ConvAI2 Dataset: Short Conversations
o Each episode of the conversation is quite short, therefore,
it is hard for the model to learn the pattern of the
understanding fast enough before the conversation ends

> Representation of the Understanding
o The current model implementation uses hidden size for
initializing the understanding, yet sizes can be variable and
larger size may allow storing richer information

> Sampling for the Understanding Update

o Current update is the average of previous understanding
and the hidden state output. But what is a better way to
refresh people’s mind?

> Pitfall of minimizing understandings’ discrepancy
o The model may be fooled by the optimization target to

generate similar decoders’ output, leading to great
instability for gradient descent
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A Architecture of Net
The Net framework views conversation as a turn-based

activity. Atturnt:

> We compute the Earth Mover's Distance [2] as Understanding

Similarity Loss to measure the discrepancy between
participants’ understanding
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> Language Modeling Loss adopts Cross Entropy Loss to assess

response accuracy

Ls = Dcr(3Y,5%) + Dor(85, s%)

> Optimization target is thus the combination of all losses

L=Ls+ ALy
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| Experiments & Results |

The Net shown in the experiments below is

> initialized with Seq25eqg ConvAl2 model weights

> the understanding units are initialized using persona
description in each dialog

> Encoders and decoders of A and B are trained
simultaneously in each train step
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A The continuous decreasing of understanding loss may
show excessive training in forcing producing the same
understanding between A and B, therefore leading to
the fluctuation of the language modeling loss

Model Output Token Accuracy Comparison
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A The performance of Net is compared against
baseline seq2seq model used in ConvAl2 competition
and Controllable Dialogue Model [3].

> The frequent fluctuation of Net's token accuracy
results from the understanding unites' re-initialization

> The model underperformance may due to the
dominating understanding similarity loss and how to
take advantage of its power is our next step
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