ConvGAN: A Context-Aware Conversation GAN
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What's unique about conversations? To me, it's
about context: the sequential and turn-based
mechanism in dialogues requires a high
awareness of the context information for the
next utterance. We define context as the
dialogue does not divert from the ongoing topics

given the presented sentences.

The ConvGAN Architecture

> Generator G: learns to generate response

> Language Discriminator D .: learns to
discriminate a real or a generated sentence

> Context Matching Discriminator D, : learns to
identify whether input sentences pairs are
context consistent

> Overall Loss L: considers both sentence

generation loss and context loss

Datasets

We tested our model on the ConvAI2 dataset[5],
where there are more than 10,000 dialogues.
Model Specifications

We implemented the model using ParlAl and
PyTorch. The generator was built upon a GRU
with 2 layers and a hidden size of 128. Both of
the discriminator took in the sentence

representations from the GRU encoder's output.

Inconsistent Pairs

Generative models are usually focused on mimic

the distribution of the

context consistent pairs. However, it neglects
another important supervision signal from
inconsistent pairs. Possibly, being able to learn

to discriminate between context consistent and

inconsistent pairs will

bring better generalization results.
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Generative adversarial networks (GANs) have
achieved promising results in natural language
generation models recently. They are able to
produce high-quality sentences by overcoming
the gradient issues|1, 2, 3]. Additionally, with
unsupervised training, they can avoid the
exposure bias[4]. It's also easy to construct the

context discriminator.
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i) D, and D, ., share the same encoder weights to encode the input sentence to the latent representation

ii1) D .and D are sets contains context matching and mismatching sentence pairs
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i1) FMD[ 1] is used in optimizing the GANs
iv) The GAN is farstly trained with MLE for stable convergence
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A The fluctuating GAN losses indicate they are

achievin g equ WWibrium in their min max games.
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A Our model outperforms the baseline
seq2seq model in both converging speed and
token accuracy in the limited training

epochs.
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A EMD Sentence Feature Matching loss is
decaying faster: that's what we want!
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A [What's in our model’s mind? In the first test

being long

Jou like 2 bell . so exciting . bair . how bitten case, it seems our model has an appetite for
plans has wave 30th ) )
pizza ;). But in the second text case, our model
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